Redis,Nginx,Netty 为什么这么香?

Redis,Nginx,Netty,Node.js 为什么这么香?这些技术都是伴随 Linux 内核迭代中提供了高效处理网络请求的系统调用而出现的。今天我们从操作系统层面理解 Linux 下的网络 IO 模型!

Redis,Nginx,Netty为什么这么香?

图片来自 Pexels

I/O( INPUT/OUTPUT),包括文件 I/O、网络 I/O。计算机世界里的速度鄙视:

内存读数据:纳秒级别。
千兆网卡读数据:微妙级别。1 微秒 = 1000 纳秒,网卡比内存慢了千倍。
磁盘读数据:毫秒级别。1 毫秒 =10 万纳秒 ,硬盘比内存慢了 10 万倍。
CPU 一个时钟周期 1 纳秒上下,内存算是比较接近 CPU 的,其他都等不起。
CPU 处理数据的速度远大于 I/O 准备数据的速度 。任何编程语言都会遇到这种 CPU 处理速度和 I/O 速度不匹配的问题!

在网络编程中如何进行网络 I/O 优化?怎么高效地利用 CPU 进行网络数据处理?

相关概念
从操作系统层面怎么理解网络 I/O 呢?计算机的世界有一套自己定义的概念。

如果不明白这些概念,就无法真正明白技术的设计思路和本质。所以在我看来,这些概念是了解技术和计算机世界的基础。

同步与异步,阻塞与非阻塞
理解网络 I/O 避不开的话题:同步与异步,阻塞与非阻塞。

拿山治烧水举例来说,(山治的行为好比用户程序,烧水好比内核提供的系统调用),这两组概念翻译成大白话可以这么理解:

同步 / 异步关注的是水烧开之后需不需要我来处理。
阻塞 / 非阻塞关注的是在水烧开的这段时间是不是干了其他事。
同步阻塞:点火后,傻等,不等到水开坚决不干任何事(阻塞),水开了关火(同步)。

Redis,Nginx,Netty为什么这么香?

同步非阻塞:点火后,去看电视(非阻塞),时不时看水开了没有,水开后关火(同步)。

Redis,Nginx,Netty为什么这么香?

异步阻塞:按下开关后,傻等水开(阻塞),水开后自动断电(异步)。

Redis,Nginx,Netty为什么这么香?

网络编程中不存在的模型。

异步非阻塞:按下开关后,该干嘛干嘛 (非阻塞),水开后自动断电(异步)。

Redis,Nginx,Netty为什么这么香?

内核空间 、用户空间

Redis,Nginx,Netty为什么这么香?

内核空间 、用户空间如上图:

内核负责网络和文件数据的读写。
用户程序通过系统调用获得网络和文件的数据。
Redis,Nginx,Netty为什么这么香?

内核态、用户态如上图:

程序为读写数据不得不发生系统调用。

通过系统调用接口,线程从用户态切换到内核态,内核读写数据后,再切换回来。

进程或线程的不同空间状态。

Redis,Nginx,Netty为什么这么香?

线程的切换如上图,用户态和内核态的切换耗时,费资源(内存、CPU)。

优化建议:

更少的切换。
共享空间。
套接字:Socket

Redis,Nginx,Netty为什么这么香?

套接字作用如下:

有了套接字,才可以进行网络编程。
应用程序通过系统调用 socket(),建立连接,接收和发送数据(I/O)。
Socket 支持了非阻塞,应用程序才能非阻塞调用,支持了异步,应用程序才能异步调用。
文件描述符:FD 句柄

网络编程都需要知道 FD???FD 是个什么鬼???Linux:万物都是文件,FD 就是文件的引用。

像不像 Java 中万物都是对象?程序中操作的是对象的引用。Java 中创建对象的个数有内存的限制,同样 FD 的个数也是有限制的。

Redis,Nginx,Netty为什么这么香?

Linux 在处理文件和网络连接时,都需要打开和关闭 FD。

每个进程都会有默认的 FD:

0 标准输入 stdin
1 标准输出 stdout
2 错误输出 stderr
服务端处理网络请求的过程

Redis,Nginx,Netty为什么这么香?

服务端处理网络请求的过程如上图:

连接建立后。
等待数据准备好(CPU 闲置)。
将数据从内核拷贝到进程中(CPU 闲置)。
怎么优化呢?对于一次 I/O 访问(以 read 举例),数据会先被拷贝到操作系统内核的缓冲区,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。

所以说,当一个 read 操作发生时,它会经历两个阶段:

等待数据准备 (Waiting for the data to be ready)。
将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)。
正是因为这两个阶段,Linux 系统升级迭代中出现了下面三种网络模式的解决方案。

I/O 模型
阻塞 I/O:Blocking I/O

Redis,Nginx,Netty为什么这么香?

简介:最原始的网络 I/O 模型。进程会一直阻塞,直到数据拷贝完成。

缺点:高并发时,服务端与客户端对等连接。

线程多带来的问题:

CPU 资源浪费,上下文切换。
内存成本几何上升,JVM 一个线程的成本约 1MB。
public static void main(String[] args) throws IOException {
ServerSocket ss = new ServerSocket();
ss.bind(new InetSocketAddress(Constant.HOST, Constant.PORT));
int idx =0;
while (true) {
final Socket socket = ss.accept();// 阻塞方法
new Thread(() -> {
handle(socket);
},“线程 [“+idx+”]” ).start();
}
}

static void handle(Socket socket) { 
    byte[] bytes = new byte[1024]; 
    try { 
        String serverMsg = "  server sss[ 线程:"+ Thread.currentThread().getName() +"]"; 
        socket.getOutputStream().write(serverMsg.getBytes());//阻塞方法 
        socket.getOutputStream().flush(); 
    } catch (Exception e) { 
        e.printStackTrace(); 
    } 
} 

非阻塞 I/O:Non Blocking IO

Redis,Nginx,Netty为什么这么香?

简介:进程反复系统调用,并马上返回结果。

缺点:当进程有 1000fds,代表用户进程轮询发生系统调用 1000 次 kernel,来回的用户态和内核态的切换,成本几何上升。

public static void main(String[] args) throws IOException {
ServerSocketChannel ss = ServerSocketChannel.open();
ss.bind(new InetSocketAddress(Constant.HOST, Constant.PORT));
System.out.println("NIO server started …");
ss.configureBlocking(false);
int idx =0;
while (true) {
final SocketChannel socket = ss.accept();// 阻塞方法
new Thread(() -> {
handle(socket);
},“线程 [“+idx+”]” ).start();
}
}
static void handle(SocketChannel socket) {
try {
socket.configureBlocking(false);
ByteBuffer byteBuffer = ByteBuffer.allocate(1024);
socket.read(byteBuffer);
byteBuffer.flip();
System.out.println(“请求:” + new String(byteBuffer.array()));
String resp = “服务器响应”;
byteBuffer.get(resp.getBytes());
socket.write(byteBuffer);
} catch (IOException e) {
e.printStackTrace();
}
}
I/O 多路复用:IO multiplexing

Redis,Nginx,Netty为什么这么香?

简介:单个线程就可以同时处理多个网络连接。内核负责轮询所有 Socket,当某个 Socket 有数据到达了,就通知用户进程。

多路复用在 Linux 内核代码迭代过程中依次支持了三种调用,即 Select、Poll、Epoll 三种多路复用的网络 I/O 模型。下文将画图结合 Java 代码解释。

①I/O 多路复用:Select

Redis,Nginx,Netty为什么这么香?

简介:有连接请求抵达了再检查处理。

缺点如下:

句柄上限:默认打开的 FD 有限制,1024 个。
重复初始化:每次调用 select(),需要把 FD 集合从用户态拷贝到内核态,内核进行遍历。
逐个排查所有 FD 状态效率不高。
服务端的 Select 就像一块布满插口的插排,Client 端的连接连上其中一个插口,建立了一个通道,然后再在通道依次注册读写事件。

一个就绪、读或写事件处理时一定记得删除,要不下次还能处理。

public static void main(String[] args) throws IOException {
ServerSocketChannel ssc = ServerSocketChannel.open();// 管道型 ServerSocket
ssc.socket().bind(new InetSocketAddress(Constant.HOST, Constant.PORT));
ssc.configureBlocking(false);// 设置非阻塞
System.out.println("NIO single server started, listening on :" + ssc.getLocalAddress());
Selector selector = Selector.open();
ssc.register(selector, SelectionKey.OP_ACCEPT);// 在建立好的管道上,注册关心的事件 就绪
while(true) {
selector.select();
Set keys = selector.selectedKeys();
Iterator it = keys.iterator();
while(it.hasNext()) {
SelectionKey key = it.next();
it.remove();// 处理的事件,必须删除
handle(key);
}
}
}
private static void handle(SelectionKey key) throws IOException {
if(key.isAcceptable()) {
ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
SocketChannel sc = ssc.accept();
sc.configureBlocking(false);// 设置非阻塞
sc.register(key.selector(), SelectionKey.OP_READ );// 在建立好的管道上,注册关心的事件 可读
} else if (key.isReadable()) { //flip
SocketChannel sc = null;
sc = (SocketChannel)key.channel();
ByteBuffer buffer = ByteBuffer.allocate(512);
buffer.clear();
int len = sc.read(buffer);
if(len != -1) {
System.out.println(“["+Thread.currentThread().getName()+"] recv :”+ new String(buffer.array(), 0, len));
}
ByteBuffer bufferToWrite = ByteBuffer.wrap(“HelloClient”.getBytes());
sc.write(bufferToWrite);
}
}
②I/O 多路复用:Poll

Redis,Nginx,Netty为什么这么香?

简介:设计新的数据结构 (链表) 提供使用效率。

Poll 和 Select 相比在本质上变化不大,只是 Poll 没有了 Select 方式的最大文件描述符数量的限制。

缺点:逐个排查所有 FD 状态效率不高。

③I/O 多路复用:Epoll

简介:没有 FD 个数限制,用户态拷贝到内核态只需要一次,使用事件通知机制来触发。

通过 epoll_ctl 注册 FD,一旦 FD 就绪就会通过 Callback 回调机制来激活对应 FD,进行相关的 I/O 操作。

缺点如下:

跨平台,Linux 支持最好。
底层实现复杂。
同步。
public static void main(String[] args) throws Exception {
final AsynchronousServerSocketChannel serverChannel = AsynchronousServerSocketChannel.open()
.bind(new InetSocketAddress(Constant.HOST, Constant.PORT));
serverChannel.accept(null, new CompletionHandler<AsynchronousSocketChannel, Object>() {
@Override
public void completed(final AsynchronousSocketChannel client, Object attachment) {
serverChannel.accept(null, this);
ByteBuffer buffer = ByteBuffer.allocate(1024);
client.read(buffer, buffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer attachment) {
attachment.flip();
client.write(ByteBuffer.wrap(“HelloClient”.getBytes()));// 业务逻辑
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
System.out.println(exc.getMessage());// 失败处理
}
});
}
@Override
public void failed(Throwable exc, Object attachment) {
exc.printStackTrace();// 失败处理
}
});
while (true) {
// 不 while true main 方法一瞬间结束
}
}
当然上面的缺点相比较它的优点都可以忽略。JDK 提供了异步方式实现,但在实际的 Linux 环境中底层还是 Epoll,只不过多了一层循环,不算真正的异步非阻塞。

而且就像上图中代码调用,处理网络连接的代码和业务代码解耦得不够好。

Netty 提供了简洁、解耦、结构清晰的 API。

public static void main(String[] args) {
new NettyServer().serverStart();
System.out.println(“Netty server started !”);
}
public void serverStart() {
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.childHandler(new ChannelInitializer() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new Handler());
}
});
try {
ChannelFuture f = b.localAddress(Constant.HOST, Constant.PORT).bind().sync();
f.channel().closeFuture().sync();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
workerGroup.shutdownGracefully();
bossGroup.shutdownGracefully();
}
}
}

class Handler extends ChannelInboundHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ByteBuf buf = (ByteBuf) msg;
ctx.writeAndFlush(msg);
ctx.close();
}

@Override 
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { 
    cause.printStackTrace(); 
    ctx.close(); 
} 

}
bossGroup 处理网络请求的大管家(们),网络连接就绪时,交给 workGroup 干活的工人(们)。

总结
回顾上文总结如下:

同步 / 异步,连接建立后,用户程序读写时,如果最终还是需要用户程序来调用系统 read() 来读数据,那就是同步的,反之是异步。Windows 实现了真正的异步,内核代码甚为复杂,但对用户程序来说是透明的。
阻塞 / 非阻塞,连接建立后,用户程序在等待可读可写时,是不是可以干别的事儿。如果可以就是非阻塞,反之阻塞。大多数操作系统都支持的。
Redis,Nginx,Netty,Node.js 为什么这么香?这些技术都是伴随 Linux 内核迭代中提供了高效处理网络请求的系统调用而出现的。

了解计算机底层的知识才能更深刻地理解 I/O,知其然,更要知其所以然。与君共勉!